I don’t know which one to select

Asked 9 months ago
Viewed 600792 times
1
I don’t know which one to select

2 Answer

2

Answer:

B

Step-by-step explanation:

Divide by pir^2 to get h all by itself and you'll have V/pir^2 = h

Edit
avatar
Lawson Denesik Jr.
15.5k 3 10 26
answered 9 months ago
2

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • V = π r² h

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Correct option = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

V = π r² h

⠀⠀⠀⠀

  • Using equations formulae

⠀⠀⠀⠀

\sf \dfrac{V}{\pi} = r² h

⠀⠀⠀⠀

\sf \dfrac{V}{\pi\times r^2} =  h

⠀⠀⠀⠀

  • checking correct option

⠀⠀⠀⠀

Option 1 :

⠀⠀⠀⠀

\sf \bigg( h = \dfrac{V}{\pi  r^2}  \bigg) \neq ( h = V - \pi r^2)

⠀⠀⠀⠀

This option is not correct

⠀⠀⠀⠀

Option 2 :

⠀⠀⠀⠀

\sf \bigg( h = \dfrac{V}{\pi  r^2}  \bigg)  = \sf \bigg( h = \dfrac{V}{\pi \times r^2}  \bigg)

⠀⠀⠀⠀

This option is correct

⠀⠀⠀⠀

Option 3 :

⠀⠀⠀⠀

\sf \bigg( h = \dfrac{V}{\pi \times r^2}  \bigg) \neq ( h = V\pi r² )

⠀⠀⠀⠀

This option is not correct

⠀⠀⠀⠀

Option 4 :

⠀⠀⠀⠀

\sf \bigg( h = \dfrac{V}{\pi \times r^2}  \bigg) \neq ( h = V - \pi - r^2)

⠀⠀⠀⠀

This option is not correct

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Correct answer = option B
Edit
avatar
Miss Sallie Feest
15.5k 3 10 26
answered 9 months ago