1
Write the system of equations shown on each graph, then give the solution to the system.

1 Answer

2

Answer:

Step-by-step explanation:

Question 1.

Slope of line 'l' = \frac{\text{Rise}}{\text{Run}}

                         = \frac{8}{6}

                         = \frac{4}{3}

Equation of a line passing through (x', y') and slope 'm' is,

y - y' = m(x - x')

Since, line 'l' is passing through (0, 7) and slope = \frac{4}{3}

Equation will be,

y - 7 = \frac{4}{3}(x-0)

y = \frac{4}{3}x+7

Similarly, slope of line m = \frac{\text{Rise}}{\text{Run}}

                                         = \frac{-3}{6}

                                         = -\frac{1}{2}

Therefore, equation of line 'm' passing through point (0, -4) will be,

y + 4 = -\frac{1}{2}(x - 0)

y = -\frac{1}{2}x-4

Solution = Point of intersection of both the lines

               = (-6, -1)

Question 2

Slope of line 'l' = \frac{\text{Rise}}{\text{Run}}

                         = \frac{-2}{5}

Equation of line 'l' passing through a point (0, 4) and slope = -\frac{2}{5}

y - 4 = -\frac{2}{5}(x-0)

y = -\frac{2}{5}x+4

Slope of line 'm' = \frac{\text{Rise}}{\text{Run}}

                           = \frac{-2}{5}

Equation of line 'm' passing through a point (0, -1) and slope = -\frac{2}{5}

y + 1 = -\frac{2}{5}(x-0)

y = -\frac{2}{5}x-1

Since, slopes of both the lines are same, these lines will be parallel.

There will be NO SOLUTION.

Edit
avatar
Ms. Baby Braun PhD
15.5k 3 10 26
answered 9 months ago